MARK SCHEME for the May/June 2014 series

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper			
				GCE O LEVEL – May/June 2014	5070	22			
A1	ALLOW: name but correct chemical formulae take precedence								
	(a)	O ₂	(1)			[1]			
	(b)	CH	₄ (1)			[1]			
	(c)	СС	<i>l</i> F₃ (1	1)		[1]			
	(d)	H ₂ ((1)			[1]			
						[Total: 4]			
A2	(a)	28.2	2 (1) /	ALLOW : 28		[1]			
	(b)	(i)	OH⁻	+ $H^+ \rightarrow H_2O(1)$ IGNORE: state symbols		[1]			
		(ii)	Amn	nonia formed (1)					
			(Am soil (NOT	monia) is a gas / (ammonia) escapes into air / (am (1) FE: 2nd marking point dependent on 1st marking poi	monia) escapes t nt being correct.	irom [2]			
	(c)	(i)	Mol	of $H_3PO_4 = 1.25 \times \frac{25}{1000} = 0.03125$ (1) (mark for world	king or correct an	swer)			
			Mole ALL	es of ammonia = 0.03125 × 3 = 0.09375 (1) (mark fo . OW: answer from 1st marking point × 3	r working or corre	ect answer)			
			Con ALL	centration of ammonia = 2.07 (1) .OW: $\frac{\text{answer from second marking point}}{0.0453}$ with correct	tly evaluated ans	wer [3]			
		(ii)	Mas NOT	s = 0.03125 × 149 (1) FE: Mark for the working out, not the answer.		[1]			
		(iii)	62.9	9 (1)		[1]			
	[Tot								

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE O LEVEL – May/June 2014	5070	22	
A 3	(a)	Ami	ide / p	peptide (1)		[1]	
	(b)	Nylo ALI	on / K _ OW :	evlar (1) polyamide		[1]	
	(c)	Chr ALL betv	omat _OW: ween	ography paper dipped into the solvent (1) chromatography paper just touching solvent (there the solvent and the bottom of the paper)	e should be no sp	bace	
		Spc mix	ot of n ture /	nixture on paper above the level of the solvent labe amino acid / amino acids / spot of amino acid / dro	lled appropriately p from sample (1)	e.g.	
		Use spo NO	e of a ts / a TE: tł	locating agent to view the spots / amino acids / us mino acids (1) nis must be after the chromatography	e of ninhydrin to	view	
		Cor kno	nparii wn ai	ng <i>R</i> _f values with known amino acids / compare wit mino acids run at the same time (1)	h height of spots t	from [4]	
	(d)	(sim	nple)	sugars / monosaccharides (1)		[1]	
	(e)	(i)	Has	many C=C bonds / has many carbon-carbon double	<u>e bonds</u> (2)		
			If two	o marks not scored, award 1 mark for <u>has C=C dou</u>	<u>ble bond</u> .	[2]	
		(ii)	Bron Deco IGN	nine / bromine water (1) blourised / goes colourless (1) ORE: goes clear / discoloured / fades			
			ΝΟΤ	E: second mark dependent on correct reagent		[2]	
		(iii)	Poly	ester / <i>Terylene</i> / other named polyester (1)		[1]	
						[Total: 12]	

	Pa	ge 4	Mark Scheme	Syllabus	Paper				
			GCE O LEVEL – May/June 2014	5070	22				
A4	(a)	oxygen bromine	copper lead						
		All four	correct (3)						
		Two cor	rect (1)						
		ALLOW	ALLOW: correct formulae						
	(b)	(i) 2C1 ALL	$\bar{} \rightarrow C l_2 + 2e^-(1)$.OW: e for e ⁻		[1]				
		(ii) Hyd	rogen is low(er) down in the reactivity series (or r	everse) / hvdrode	en is				
		less	reactive (than sodium) (or reverse) (1)		[1]				
	(c)	Aluminiu	m / calcium / sodium / potassium / lithium / barium /	[/] magnesium (1)	[1]				
					[Total: 6]				
A5	(a)	Haematite – is iron ore / contains the iron / is reduced to form iron (1)							
		Limestor ALLOW	Limestone – (decomposes to) form calcium oxide which removes impurities (1) ALLOW: lime (in place of calcium oxide)						
		Coke – f	orms carbon monoxide / reduces the iron ore (1)		[3]				
	(b)	Positive	ions in regular layers (1)	n					
		NOTE: 2							
		Electron	s shown interspersed between the particles drawn (1)					
		NOTE: I diagram	Marks can be scored from correct description in wri	ting or from a lab	elled [2]				
	(c)	Softer / ı	more malleable / more ductile (1)		[1]				
	(d)	(i) Iron	(II) ions gain electrons / iron ions gain electrons / it	gains electrons (1) [1]				
		(ii) Gre bec	en solution becomes paler / green solution fac omes colourless / magnesium becomes coated with	des / green sol a dark solid (1)	ution [1]				
					[Total: 8]				
					-				

Page 5	Mark Scheme	Syllabus	Paper	
	GCE O LEVEL – May/June 2014	5070	22	

- **A6 A** iron (1)
 - **B** iron(II) chloride (1)
 - **C** hydrogen (1)
 - **D** iron(II) hydroxide (1)
 - **E** iron(III) chloride (1)
 - **F** iron(III) hydroxide (1)

[6]

[Total: 6]

B7 (a)

$$\begin{array}{ccccccccc}
H & H & H \\
| & | & | \\
H - C - C - C - H \\
| & | & | \\
H & C & H \\
H & C & H \\
H & H & H
\end{array}$$
(1)

[2]

[1]

[3]

- (b) (i) $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O(1)$ ALLOW: correct multiples / fractions IGNORE: state symbols [1]
 - (ii) Produces carbon monoxide / produces poisonous gas / produces toxic gas / produces lots of soot (1)
- (c) $C_4H_{10} + Cl_2 \rightarrow C_4H_9Cl + HCl(1)$ ALLOW: correct equation with further substitution of H by Cl [1]
- (d) (i) Cracking (1) [1]
 - (ii) (% H is) 16 (%) (1)

Moles C:
$$\frac{84}{12}$$
 Moles H: $\frac{16}{1}$ or mole ratio 7:16 (1)

Molecular formula is $C_7H_{16}(1)$

	Page 6		Mark Scheme	Syllabus	Paper
			GCE O LEVEL – May/June 2014	5070	22
	(iii	i) C ₂ H ALL	₄ (1) OW: appropriate formula based on incorrect answe	r to (c)(ii)	[1] [Total: 10]
B8 ((a) 2 A I(CH₃CH ALLOW GNORE	$_{2}CH_{2}CH_{2}OH + 2K \rightarrow 2CH_{3}CH_{2}CH_{2}CH_{2}OK + H_{2}$: any correct multiple / fraction :: state symbols	(1)	[1]
((b) P	ops wit	h lighted splint / (small) explosion with lighted splint	(1)	[1]
((c) №	loles of	hydrogen = $\frac{400}{24000}$ = 0.01667 (1) (mark for working	g or correct answe	er)
	Ν	loles of	alkali metal = $0.01667 \times 2 = 0.03334$ (1) (mark for v	vorking or correct	answer)
	A	l _r = 7 (1)		
	L A	ithium / LLOW	Li (1) appropriate answer based on incorrect <i>A</i> _r in step 3		[4]
((d)				
	H-	H C	$ \begin{array}{ccccc} 0 & H & H \\ \parallel \\ C & - & 0 & -C & -C & -H \\ H & H & H \\ \end{array} $ (1)		[1]
((e) C I(GNORE	\rightarrow 2CO ₂ + 2C ₂ H ₅ OH (1) : state symbols		
	A	ny two	(1 mark each) from		
	• • •	Yea War Abso pH r	st m / quoted temperature of 20–45 °C ence of air / absence of oxygen / anaerobic neutral / pH near neutral		
	٠	Disti	l to get final product		[3]
					[Total: 10]

	Page 7		Mark Scheme	Syllabus	Paper				
			GCE O LEVEL – May/June 2014	5070	22				
B9	(a)	 heat taken in / heat absorbed / heat energy taken in / heat energy absorbed (1) Reaction rate increases 							
	(b)								
		Particles have more energy / particles moving faster / particles have more (kinetic) energy (1)							
		More particles have energy above activation energy / more effective collisions / more successful collisions / more energetic collisions / more fruitful collisions (1) [2]							
	(c)	Position of equilibrium does not change (1) Same number moles of <u>gas</u> on both sides / same number of <u>gas</u> molecules on both sides / same volume of <u>gas</u> on both sides (1)							
	(d)	Moles of iron = $\frac{2.80}{56}$ = 0.05 (1) (mark for working or correct answer) Moles of Fe ₃ O ₄ = $\frac{0.05}{2}$ = 0.01667 (1) (mark for working or correct answer)							
		Mass of	Fe ₃ O ₄ = (0.01667 × 232) = 3.87 g (1)						
		OR							
		168g of ALLOW :	Fe makes 232 g of Fe ₃ O ₄ (1) $M_{\rm r}$ = 232						
		2.8g of F	e makes 232/168 × 2.8 (1)						
		Mass = 3	3.867 (1)		[3]				
	(e)	NOTE: n	nust be reference to zinc somewhere in the answer.	. If not max 1 mar	k.				
		Zinc coa	ting / barrier / layer / covering (1)						
		Stops wa	ater getting to iron / stops oxygen getting to iron (1)						
		OR							
		Zinc is m to be oxi	nore reactive / zinc is above iron in the reactivity se dised (1)	eries / zinc more l	ikely				

Zinc reacts in preference to iron (1)

[2]

[Total: 10]

Page 8			Mark Scheme					Syllabus	Paper	
				GCE O	LEVEL – Ma	ay/June 20	14	5070	22	
B10(a)	(i)			protopo	alaatrana	noutrono				
		210	 ۸+	protons	electrons		(1)			
		85	AL	60	60	125	(1)			
		85	At	85	85	126	(1)			
									[2	
	(ii)	Aton	ns with e numb	same ato	omic numbe	er and diffe	rent mass	number / atoms	with	
		atom	nic num	hber and o	different nuc	cleon numb	er / atoms	of the same eler	ment	
		with	differe	nt number	s of neutron	s / nucleon	s (1)		[1	
(b)	Cor	rect '	dot-and	d-cross' dia	agram (1)					
	IGN	IORE	: inner	shell elect	trons					
	ALI	LOW:	electro	ons to be a	all dots or all	crosses			[1	
(c)	(i)	Mag trans	nesium sfers el	n loses e ectrons to	lectrons an astatine (1)	d astatine	gains ele	ectrons / magnes	sium	
		_			()					
		Corr gain	ect nur ed (by	nbers lost astatine) (/ gained: 2 1)	electrons (lost from n	nagnesium) 1 eleo	ctron [2	
		_								
	(11)	Any	two (1 ⊎iah m	mark eac	ch) from: ht / high hoili	na noint				
		•	Does n	ot conduc	t electricity a	as a solid				
		•	Condu	cts electric	ity when mo	olten / cond	ucts electri	city in solution		
		•	ALLOV	V: Soluble	in water				[2	
(d)	(i)	Br_2	+ 2At⁻	$\rightarrow 2Br^{-}$	+ $At_2(1)$					
. ,	()	ALL	OW: co	orrect mult	tiples / fraction	ons				
		IGN	ORE: s	tate symb	ols				[1	
	(ii)	Asta	tine is	less read	tive (than i	odine) (or	reverse) /	iodide ions are r	nore	
		diffic	ult to o	xidise (tha	an astatide id	ons) (or rev	erse) (1)		[1	
									[Tatal: 40	
									Li otal: 10	